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Abstract

Ruminant animals digest cellulose via a symbiotic relationship with ruminal

microorganisms. Because feedstuffs only remain in the rumen for a short time,

the rate of cellulose digestion must be very rapid. This speed is facilitated by

rumination, a process that returns food to the mouth to be rechewed. By

decreasing particle size, the cellulose surface area can be increased by up to 106-

fold. The amount of cellulose digested is then a function of two competing rates,

namely the digestion rate (Kd) and the rate of passage of solids from the rumen

(Kp). Estimation of bacterial growth on cellulose is complicated by several factors:

(1) energy must be expended for maintenance and growth of the cells, (2) only

adherent cells are capable of degrading cellulose and (3) adherent cells can provide

nonadherent cells with cellodextrins. Additionally, when ruminants are fed large

amounts of cereal grain along with fiber, ruminal pH can decrease to a point

where cellulolytic bacteria no longer grow. A dynamic model based on STELLA
s

software is presented. This model evaluates all of the major aspects of ruminal

cellulose degradation: (1) ingestion, digestion and passage of feed particles,

(2) maintenance and growth of cellulolytic bacteria and (3) pH effects.

Introduction

Humans have utilized microorganisms for more than 6000

years (Stanier et al., 1976). This utilization, first manifested

in methods of food preservation, was gradually expanded to

include alcoholic beverages and a variety of other fermenta-

tion products (e.g. solvents and antibiotics). However, an

often-overlooked use of microorganisms was the domestica-

tion of ruminants. Humans and other simple-stomached

animals cannot digest cellulose, the world’s most abundant

organic polymer, but ruminant animals provide a habitat

(the rumen) for anaerobic microorganisms that can (Hun-

gate, 1966). Domesticated ruminants allowed humans to

expand their geographic range, develop more stable food

supplies and create complex communities (Russell, 2002).

Weimer (1992) estimated that the collective ruminal volume

of domesticated cattle, sheep and goats (c. 2 billion animals)

was nearly 100 billion liters, and concluded that, on a

volume basis, the rumen is the ‘world’s largest commercial

fermentation process.’ The ability of ruminal fermentation

to digest cellulose is typically highlighted as its primary

attribute, but there is another significant nutritional aspect.

Simple-stomached animals depend on feed for 10 essential

amino acids, but ruminants can harvest microbial protein to

meet this requirement. In ruminants, as much as 90% of the

amino acids reaching the small intestine are derived from

ruminal microorganisms; the efficiency of microbial growth

is very important (Stern et al., 1994). However, it should be

noted that while protozoal cellulose degradation may be low,

protozoa are active consumers/degraders of both dietary

starch and bacterial cells, and thus the amount of protozoal

biomass in the rumen can approach that of the bacterial

biomass, although most protozoal biomass does not escape

the rumen (Weller & Pilgrim, 1974).

We have chosen to focus our attention on bacterial

cellulose digestion and growth because the bacteria are

essential. Some cellulose is also digested by protozoa, but in

vivo and in vitro studies have indicated that their activity is

much less than that of bacteria (Klopfenstein et al., 1966;

Williams & Coleman, 1997; Lee et al., 2000). When very

poor-quality forages are fed, fungi also play a role in

cellulose digestion (Bauchop, 1979). However, ruminal
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fungi are inhibited by bacterially produced, bacteriocin-like

substances and are typically present when large amounts

of cereal grain are fed (Dehority & Tirabasso, 2000). The

purposes of this minireview are to (1) review our knowledge

of ruminal cellulose digestion and factors affecting the pro-

duction of bacterial cells, (2) provide a quantitative analysis of

ruminal cellulose digestion and bacteria growth, (3) perform

sensitivity analyses to assess the relative importance of

physiological characteristics, (4) determine whether our

current knowledge is adequate to explain in vivo cellulose

digestion and its availability to the animal and (5) identify

potential gaps in our understanding with an outlook for

future research.

Ruminal cellulolytic bacteria

After developing methods for the cultivation of strictly

anaerobic bacteria, Robert Hungate (1950) isolated predo-

minant cellulolytic bacteria from the rumen and classified

them as Bacteroides succinogenes, Ruminococcus albus and

Ruminococcus flavefaciens. Some strains of Butyrivibrio fibri-

solvens are weakly cellulolytic, but it is doubtful that they

play a significant role in ruminal cellulose degradation

(Bryant & Small, 1956). Other species have occasionally

been described, but the original three still seem to be the

most important ones (Weimer, 1993b).

Fibrobacter succinogenes

Because the rod-shaped cellulolytic isolate produced suc-

cinate and was pleomorphic, Hungate (1950) named it

B. succinogenes. However, B. succinogenes is not closely

related to colonic bacteroides, and its 16S rRNA gene

sequence indicated that it should be placed in a new genus,

Fibrobacter (Montgomery et al., 1988). Fibrobacter is not

closely related to most other eubacteria and has been

classified into a separate phylum (Fibrobacteres) containing

no other genera (Gupta, 2004). Fibrobacter strains isolated

from the rumen are typically called succinogenes, but there

are two recognized species (Qi et al., 2004). The 16S rRNA

gene similarity of F. succinogenes S85 and Fibrobacter

intestinalis NR9 is o 93%, and the DNA homology is only

20% (Lin & Stahl, 1995; Béra-Maillet et al., 2004). Fibrobac-

ter intestinalis (Montgomery et al., 1988) was originally

isolated from the large intestine of a cow, but habitat

distinction is not a clear-cut indicator of taxonomy at the

species level.

Most studies with F. succinogenes have used strain S85

(Bryant et al., 1959), and Halliwell & Bryant (1968) con-

cluded that S85 was the most active cellulolytic bacterium

isolated from the rumen. However, F. succinogenes binds

tightly to feed and is not easy to isolate (Stewart et al., 1981).

The question then arises, as to how good a model S85 is.

Recently, Béra-Maillet et al. (2004) compared freshly iso-

lated strains with S85 and all but one were similar. Based on

cellular and extracellular activity patterns, xylanase activities

and ability to digest microcrystalline cellulose, they con-

cluded that S85 is a ‘good model for studying the fibrolytic

properties of the species . . ..’

Ruminococcus albus and R. flavefaciens

The cellulolytic cocci (Hungate, 1950) were originally differ-

entiated by pigmentation. The nonpigmented (white) iso-

lates were called R. albus and the yellow-orange isolates were

named R. flavefaciens, but pigmentation varies substantially.

Ruminococcus albus 7 and several other strains have a

distinct lemon-yellow color and, interestingly, these strains

degrade cellulose considerably better than the white strain,

R. albus 8. In a pure culture, R. albus produces ethanol,

acetate, formate and hydrogen, while R. flavefaciens pro-

duces succinate instead of ethanol. 16S rRNA gene sequence

analysis places the ruminococci within the Gram-positive

bacterial phylum Firmicutes (Odenyo et al., 1994a), but they

do not have a typical Gram-staining reaction. Ruminococcus

albus cells often stain Gram-negative and R. flavefaciens is

Gram variable (Hungate, 1966). Most ruminococci cannot

grow on pentose monosaccharides; however, many can

utilize hemicelluloses as a source of energy, suggesting an

ability to grow on oligomeric products of enzymatic hydro-

lysis (Dehority, 1973).

Culture-based vs. culture-independent
enumeration

In the early 1950s, Marvin Bryant and his colleagues used

the anaerobic techniques developed by Hungate to examine

and enumerate cellulolytic ruminal bacteria from cattle fed

different rations (Bryant & Burkey, 1953a, b; Bryant &

Doetsch, 1954). Their results indicated that cellulolytic

bacteria similar to those previously described by Hungate

(1950) accounted for 5–28% of the nonadherent viable cell

count. The viable cell number is typically only 10% of the

total nonadherent cell number (Bryant & Burkey, 1953b;

Hungate, 1966). The question then arises as to, does the

rumen contain a large population of ‘dead’ bacteria or are

microbiologists simply not able to culture the most numer-

ous and perhaps most important ruminal bacteria? With

the development of culture-independent, molecular-based

techniques of bacterial enumeration, this has become a

central question in virtually all fields of microbial ecology

(Hugenholtz et al., 1998). As noted by Amann et al. (1995),

‘The frequent discrepancy between direct microscopic

counts and numbers of culturable bacteria from environ-

mental samples is just one of several indications that we

currently know only a minor part of the diversity of

microorganisms in nature.’
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A further complication to the enumeration of cellulolytic

bacteria is attachment and the inability of microbiologists to

account for adherent populations. ATP determinations

indicated that c. 70% of all rumen bacteria are firmly

attached to feed particles and not easily removed (Forsberg

& Lam, 1977). Because even small particles containing many

individuals would only produce a single colony on a Petri

plate or in an agar roll tube, significant underestimation is

likely. With the advent of cultivation-independent molecu-

lar techniques, it was hoped that this bias could finally be

overcome.

Using taxon-specific primers and appropriate standards

that correct for species-specific variations in the efficiencies

of the PCR, it is possible to estimate the fraction of the target

gene in the bacterial population that is contributed by a

particular taxon (Stevenson & Weimer, 2007). Because 16S

rRNA gene copy number varies from one to 15 per genome

among bacterial species and the average copy number in a

particular rumen sample cannot be determined, interpreting

the relative population sizes among bacterial species requires

caution. Fortunately, the rRNA gene copy number for the

three primary cellulolytic species has been reported to be

three per genome (Frey et al., 2006), and so the relative

population sizes of these species can be compared directly.

However, even probes or PCR primers based on 16S

rRNA genes are typically derived from cultivated bacteria,

and the possibility that their specificity prevents detection of

all members of a phylogenetically related group is difficult to

exclude. This is illustrated by recent sensitive and reliable

real-time PCR experiments (Stevenson & Weimer, 2007;

Weimer et al., 2008). Results indicated that R. flavefaciens

was generally much more abundant than R. albus, but

neither species accounted for 4 1% of the total 16S rRNA

gene. However, when a genus-level primer for Ruminococcus

was used, this value was 8%. These results indicate that not

all ruminococci belong to the two known ruminal species.

Fibrobacter succinogenes only represented c. 1% of the

prokaryotic 16S rRNA gene copy number, but this value

was based on a species- rather than a genus-level primer

(Stevenson & Weimer, 2007).

Molecular-based, culture-independent enumeration

methods have also permitted in vitro studies to elucidate

interactions among cellulolytic species. Both batch (Odenyo

et al., 1994a, b) and continuous (Chen & Weimer, 2001)

culture studies indicate that ruminal cellulolytic species

compete intensely for both cellulose and cellobiose. The

outcome of the interactions among the cellulolytic species

appears to be based on a number of factors, including the

rate of adherence to cellulose (Koike et al., 2003), affinity

for cellodextrin products of cellulose hydrolysis (Shi &

Weimer, 1996), production of bacteriocins (Chen et al.,

2004) and the presence of noncellulolytic bacteria (Chen &

Weimer, 2001).

Do we have suitable model organisms?

Discrepancies among total counts, culture-based and non-

culture-based enumeration techniques can be discouraging,

but less pessimistic views are possible if one views cultivated

microorganisms simply as models. Do the cultured organ-

isms have properties and characteristics that are representa-

tive of the bacteria in the mixed population? Are the

activities of cultured organisms sufficient to explain the

ability of the mixed population to perform a specific

function? In the case of ruminal cellulose digestion, the

answers (at least for now) seem to be yes. The cellulolytic

bacteria originally isolated by Hungate (1950) can use

ammonia as their sole source of nitrogen, have little capacity

to take up and use amino nitrogen sources, require

branched-chain volatile fatty acids to synthesize branched-

chain amino acids and are sensitive to even modest de-

creases in pH, and all of these characteristics can influence

cellulose digestion by mixed ruminal bacteria in vitro or in

vivo (Bryant, 1973; Russell & Wilson, 1996; Atasoglu et al.,

2001).

The activities of the pure cultures to digest cellulose also

seem to be adequate, as illustrated by the following calcula-

tion. The specific growth rates of cellulolytic ruminal

bacteria on cellulose can be as high as 0.1 h�1 (Wells &

Russell, 1994; Maglione et al., 1997), when observed yields

are typically 0.2 g cells g�1 cellulose (Shi & Weimer, 1992;

Weimer, 1993a). Given these values, the specific activity of

cellulose digestion can be 0.5 g cellulose g�1 cells h�1. The

amount of bacterial dry matter in the rumen is c. 10 g L�1

(Hristov & Broderick, 1996), yielding a cellulose digestion rate

of 5.0 g cellulose L�1 h�1, which can be compared with cellulose

that is actually digested in the rumen. If a cow with a 70-L

rumen consumes 10 kg of forage dry matter per day, the

cellulose concentration is 200 g kg�1 dry matter, and if 50% of

the cellulose is digested in the rumen, the cellulose digestion

rate would be 1.0 kg cellulose per day or 0.60 g cellulose L�1 h�1.

This means that the cellulolytic population would need to be

0.6/5.0 or 12% of the bacterial population, a value within the

range discussed above.

Mechanism of ruminal cellulose digestion

‘True’ cellulases cannot be isolated easily from cellulolytic

ruminal bacteria. Cell-free extracts of ruminococci only

solubilize a small amount of native cellulose, and extracel-

lular culture fluid extracts from F. succinogenes S85 have

virtually no activity, even though the cultures grow well on

this substrate (Halliwell & Bryant, 1968; Béra-Maillet et al.,

2004). With the advent of the molecular era, rumen micro-

biologists had great hopes that the mechanism of ruminal

cellulose degradation would finally be defined. The genome

of F. succinogenes is now available, but our understanding of
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ruminal cellulases and their action is still lacking (http://

www.tigr.org/tdb/rumenomics/genomes.shtml).

Carboxymethylcellulose (CMC) hydrolysis is often used

as a surrogate for native cellulose degradation, and a variety

of CMCases have been heterologously expressed and char-

acterized (Morrison et al., 2003; Qi et al., 2007). However,

many (if not most) CMCases have little capacity to digest

native insoluble cellulose and many noncellulolytic ruminal

bacteria can hydrolyze CMC even though they cannot utilize

native cellulose as a substrate for growth (Avgustin et al., 1997;

Fields et al., 1998). Mixed ruminal bacteria from cattle fed

hay had twice as much CMCase activity as bacteria from cattle

fed 90% cereal grain, but CMCase activity was not strongly

correlated with cellulose utilization (Fields et al., 1998).

Because all of the CMCase-positive, cellobiose-utilizing rum-

inal bacteria grew on b-glucan, CMCases seem to be a

mechanism for utilizing water-soluble mixed b-glucans from

cereal grains rather than native cellulose (Fields et al., 1998).

The failure of crude extracts to digest native cellulose

could be related to cellular organization. Some anaerobic

bacteria that actively degrade native cellulose (e.g. Clostridium

thermocellum) have organized structures called cellulosomes,

in which numerous cellulases and other polysaccharide

hydrolases are arranged on the cell surface in a manner

thought to optimize plant cell wall hydrolysis (Bayer et al.,

2004). Microscopic examination suggests that ruminal fungi

(Wood et al., 1986) and R. albus (Pegden et al., 1998) have

similar structures, and this idea has been confirmed by

biochemical and genomic studies. Fibrobacter succinogenes

S85 attaches tightly to cellulose. However, there is no

indication that it has cellulosomes, and the absence of

known dockerin and cohesin sequences in its genome makes

it extremely unlikely that it produces them (Park et al.,

2007). The ability of this species to degrade cellulose

effectively instead appears to reside in its genomic encoding

of an unusually large number (at least 33) of different

cellulases and related enzymes (Qi et al., 2007).

Another explanation for the inability of F. succinogenes

S85 extracts to digest native cellulose may be feedback

inhibition. Maglione et al. (1997) noted that the cellulose-

dependent succinate production of F. succinogenes S85 cultures

could be used to estimate first-order rates of native cellulose

digestion, and results indicated that the cellulose digestion rate

was closely correlated to the cellulose surface area. However,

when thiocellobiose, a nonmetabolizable analog of cello-

biose, was added, the rate of the cellulose-dependent succi-

nate production decreased and Lineweaver–Burk plots

indicated that thiocellobiose was a competitive inhibitor of

cellulose digestion. The potential utility of end-product

inhibition to F. succinogenes S85 is consistent with the effect

of ‘excess’ cellobiose. N-limited, cellobiose-excess F. succino-

genes S85 cell suspensions had little intracellular ATP or

protonmotive force and viability declined dramatically

(Maglione & Russell, 1997), but such declines were not

observed when excess cellulose was added (Thomas &

Russell, 2003).

Bacterial growth kinetics

Because ruminants depend on microbial protein as an

amino acid source, the amount of bacterial mass produced

in the rumen can often be as important to the animal as the

amount of cellulose digested (Hungate, 1966). Microbiolo-

gists usually grow bacteria in batch cultures with soluble

energy sources, under which conditions: mx =� dS/dt�Y,

where m is the specific growth rate constant (h�1), x is the

bacterial cell mass, S is the substrate concentration and Y is

the yield coefficient or the cell mass produced per unit of

substrate (e.g. g cells g�1 glucose) (Ingraham et al., 1983).

Algebraic rearrangement indicates that m= � dS/dt�Y/x.

Thus, m is proportional to � dS/dt. In continuous culture,

Y is not a constant and, at low dilution rates, both m and

Y decline (Herbert et al., 1956). The decrease in m is due to a

lower rate of S addition, but the decline in Y indicates

another avenue of energy source utilization. Marr et al.

(1963) called this nongrowth utilization ‘maintenance’ and,

in their derivation, � dS/dt�Y =mx1ax, where ‘a’ is the

specific maintenance coefficient (h�1). This derivation has

three assumptions. Firstly, ‘a’ is a constant. Secondly, Y is

lower when � dS/dt is lower because a greater fraction of

the S is being diverted to maintenance. Thirdly, bacteria

grow even faster if they have no maintenance requirement.

Pirt (1965) introduced a derivation that views mainte-

nance differently, in which maintenance (m) is the amount

of energy necessary to sustain a mass of bacteria for a

specific time (g glucose g�1 bacteria h�1). The two deriva-

tions are mathematically related: m = a/YG or m�YG = a,

where YG is the theoretical maximum yield (without main-

tenance). Maintenance appears to entail at least three

functions: (1) retention of ion gradients, (2) molecular

turnover and (3) motility (Russell & Cook, 1995). In vitro

studies indicate that ruminal cellulolytic bacterial have ‘a’

coefficients ranging from 0.01 to 0.02 h�1 g cellulose

(g bacteria)�1 h�1 (Shi & Weimer, 1992; Weimer, 1993a),

which are as much as fourfold lower than those for

noncellulolytic ruminal bacteria (Russell & Baldwin, 1979).

Stouthamer (1973) presented calculations based on stan-

dard pathways of biosynthesis and noted that YG would vary

with the amount of ATP available as well as the cell

composition. YG values for pure cultures of ruminal cellulo-

lytics range from 0.23 to 0.30 g cells g�1 cellulose (Shi &

Weimer, 1992; Weimer, 1993a). However, these estimates

were based on assumed cell compositions and are as much as

twofold lower than those of other ruminal bacteria (Russell

& Baldwin, 1979). Estimation of YG is further complicated

by changes in end products. For example, R. albus produces
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ethanol in vitro, but this product is not formed in vivo

(Iannotti et al., 1973). In vivo, methanogens consume

hydrogen and interspecies hydrogen transfer from R. albus

allows it to make more acetate and increase ATP and cell

production (Wolin & Miller, 1983).

When bacteria grow on soluble energy sources, the factor

limiting � dS/dt and m is the capacity of the bacteria to take

up substrate and the system is initially first order with

respect to bacterial cells (rather than the substrate). How-

ever, the situation with insoluble cellulose in the rumen is

different. The rumen always has a high concentration of cells

and ruminal fluid inocula can be diluted five- to sixfold

before there is a significant decrease in the cellulose diges-

tion rate (Mouriño et al., 2001). Based on these observa-

tions, the cellulose digestion rate (� dS/dt) in the rumen is

primarily dictated by the surface area, physical properties

and chemical nature of the cellulose and its surrounding

matrix (Weimer et al., 1990; Fields et al., 2000; Kohn, 2003).

Ruminal cellulolytic bacteria do not secrete cell-free

cellulases (Halliwell & Bryant, 1968) and only ‘adherent’

cells digest cellulose (Gong & Forsberg, 1989; Weimer,

1993a, b). However, cellulolytic and noncellulolytic ruminal

bacteria can be cocultivated for long periods with cellulose

as the sole energy source. Scheifinger & Wolin (1973)

hypothesized that the noncellulolytics were using cellulose

fragments released by the cellulases. However, more recent

work indicates another avenue of cross-feeding (Wells et al.,

1995). Ruminal cellulolytic bacteria have intracellular phos-

phorylases (Alexander, 1961) and these reversible enzymes

produce cellodextrins that can be secreted and made avail-

able to the nonadherent bacteria (Wells et al., 1995).

Cellodextrin efflux is probably not an ‘altruistic’ charac-

teristic of ruminal cellulolytic bacteria. When bacteria use

phosphorylases to cleave hydrolytic bonds, hydrolases are

not needed, one of the products is already phosphorylated

(as glucose-1-phosphate) and alternative (ATP consuming)

mechanisms of phosphorylation (e.g. glucose kinase) can at

least be partially avoided. The equilibrium constant of

cellobiose phosphorylase (determined in the nonruminal

cellulolytic bacterium C. thermocellum) is 4 (Alexander,

1961). Experiments with F. succinogenes S85 indicated that

the ratio of cellodextrin to cellodextrin with one more

glucose unit (n/n11) was 4 (Wells et al., 1995) and the ratio

of F. succinogenes S85 to the noncellulolytic ruminal bacter-

ium, Streptococcus bovis, in cellulose cocultures was also 4

(Wells et al., 1995). These results suggest that the bacterium

receiving the cellodextrin receives approximately the same

benefit as the one producing it and vice versa.

Fermentation vs. passage

Waldo et al. (1972) proposed that cellulose digestion in the

rumen was a function of two competing, first-order rates

(h�1): the digestion rate (Kd) and the rate of passage of solids

through the rumen (Kp). Kp is related to both the feed intake

and the type of feed consumed (Allen & Mertens, 1988), but

can be estimated from the passage of labeled feed particles

(Satter, 1985). Kd is estimated from in vitro or in situ

experiments and Kd� S = � dS/dt (Van Soest, 1973; Wei-

mer et al., 1990). Feeds for Kd determinations are finely

ground to simulate the effects of rumination. If initial lag

periods are ignored and one realizes that Kd sometimes

declines after most of the cellulose is consumed, the formula

Kd/(Kd1Kp) provides a surprisingly good index of the

amount of cellulose digested in the rumen (Fox et al., 2004).

This model does not attempt to predict the passage of

individual populations of bacteria from the rumen and

assumes that bacteria produced in the rumen will pass from

the rumen to the small intestine and that lysis and predation

will eventually be subtracted. This constraint is due to the

fact that methods of differentiating bacteria from each other

and from feed particles are not yet accurate. For many years,

the most commonly used microbial markers of bacterial

were 15N-labeled ammonia, the bacterial cell wall amino

acid diaminopimelic acid (DAPA) and the 2-aminoethyl-

phosphonic (AEP) of protozoa (Ling & Buttery, 1978).

However, AEP is difficult to measure and the DAPA content

varies widely among bacterial species. Moreover, DAPA

present in cell wall material released due to intraruminal

turnover of bacteria appears to persist much longer than the

rapidly degraded proteins in the bacterial cytoplasm, a

problem that would invalidate the use of DAPA as a

microbial protein marker (Masson et al., 1991). Nitrogen-

15 measurements are labor intensive and require careful

mathematical interpretation (Purser & Buechler, 1966).

However, 15N measurement is now considerably easier and

less expensive and can be the method of choice for in vivo

experimentation (G.A. Broderick, pers. commun.). In recent

years, RNA determination has been simplified by measuring

nonmetabolized urinary purine derivatives. Purine-derivative

excretion provides an alternative to gut cannulae and more

precise estimates of digesta flow from the rumen. However,

as Broderick & Merchen (1992) noted ‘no marker has

proven completely satisfactory; hence, yield estimates are

relative rather than absolute.’

Endogenous metabolism

Growth and maintenance can be described by �dS/

dt�Y =mx1ax, but this equation does not address ‘starva-

tion’ (Dawes, 1985), when transmembrane gradients and

ATP pools dissipate unless endogenous metabolism prevents

this de-energetization. Bacteria with phosphotransferase

systems (PTS) reserve a pool of phosphoenolpyruvate and

can use it to reinitiate transport (Thompson & Thomas,

1977). However, cellulolytic ruminal bacteria lack a PTS
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(Maas & Glass, 1991; Chow & Russell, 1992) and use stored

glycogen to prevent cellular death (Wells & Russell, 1994).

Because both maintenance and endogenous metabolism

involve ion gradients, they appear, superficially, to be

similar. However, in vitro and in vivo experiments with

mixed ruminal bacteria indicate that the endogenous meta-

bolism needed to preserve a subsequent rapid rate of

cellulose degradation is 10-fold lower than the maintenance

rate and they could starve for 24 h before the cellulose

digestion rate decreased (Van Kessel & Russell, 1997).

Nitrogen, lysis and predation

Cellulolytic ruminal bacteria utilize ammonia as a nitrogen

source and have little capacity to take up amino nitrogen

(Bryant, 1973; Atasoglu et al., 2001). 15N labeling studies

indicated turnover of microbial mass in the rumen that is

typically explained by protozoal predation of bacteria (No-

lan et al., 1976; Firkins et al., 1992). However, few protozoa

ever leave the rumen (Weller & Pilgrim, 1974) and protozoa

are very prone to lysis (Ankrah et al., 1990). These observa-

tions implied that the converse was also possible, namely

protozoal lysis, followed by bacterial metabolism (Wells &

Russell, 1996a, b). Prevotella species may account for

40–60% of the bacterial 16S rRNA gene copy number

in vivo (Stevenson & Weimer, 2007), but most have yet to

be cultured and are probably not cellulolytic. Studies with

other species of ruminal Prevotella indicate that lysis is not

significant, but Prevotella species are subject to protozoal

predation (Callaway & Russell, 2000). Some ruminal bacter-

ia are very prone to lysis (Wells & Russell, 1996b). Bacteria

must expand their cells while they are growing and use

autolysins to cut the cell wall, to enable expansion (Koch,

1991). Ruminal bacteria have different types of autolytic

regulation. Fibrobacter succinogenes uses a proteinase to

degrade its autolysins once it reaches the stationary phase,

and this degradation is triggered by energy source depletion

(Wells et al., 1995; Wells & Russell, 1996a, b; Maglione &

Russell, 1997). If nitrogen or some other factor limits

growth, the autolysins are not degraded and lysis occurs.

Strains of B. fibrisolvens and Ruminobacter amylophilus lyse

even faster than F. succinogenes, but little is known of their

autolytic regulation. In S. bovis, autolysins are inactivated

after cells reach the stationary phase. The inactivation of S.

bovis autolysins is mediated by an unusual sugar residue

(kojibiose) in its lipoteichoic acids. Kojibiose is a glucose

disaccharide with a 1,2 linkage. If S. bovis is cultivated with

2-deoxyglucose, kojibiose is not produced, the autolysins are

not inactivated and the cultures lyse (Bond et al., 1999).

Ruminal acidosis

When cattle are fed an abundance of cereal grain along with

fiber, volatile fatty acids can accumulate and ruminal pH can

decline (Ash & Dobson, 1963). Ruminal pH is perhaps the

most important environmental parameter affecting cellulose

degradation by the ruminant animal (Mouriño et al., 2001).

Because ruminal cellulases with activity against native

cellulose have not been extracted or purified, the effect of

pH on the cellulases per se has not been directly determined.

However, work with nonruminal bacteria indicated that

most cellulases act by an acid catalysis mechanism and are

activated (not inhibited) by mildly acidic pH (Russell &

Wilson, 1996). The effect of pH on ruminal cellulose

digestion is more easily explained by growth-related phe-

nomena. None of the ruminal cellulolytic bacteria have

evolved to grow at pH values significantly o 6.0 – a matter

of some significance, as the rumens of both beef and dairy

cattle under modern production conditions spend a sub-

stantial amount of the feeding cycle below this pH value.

Inhibition of growth by low pH is related to intracellular

pH regulation (Russell & Wilson, 1996). Intracellular pH of

acid-resistant fermentative bacteria declines when extracel-

lular pH is low, but this strategy is only feasible if intracel-

lular metabolism can withstand a decrease in pH (Russell &

Diez-Gonzalez, 1998). Ruminal cellulolytic bacteria attempt

to maintain a constant intracellular pH, but this leads to a

large transmembrane pH gradient. Because undissociated

volatile fatty acids can freely pass into the more alkaline

interior, there is a logarithmic and toxic accumulation of

intracellular volatile fatty acid anions (Russell & Diez-

Gonzalez, 1998). Studies with F. succinogenes S85 demon-

strated that creation of a larger pH gradient also leads to a

nearly proportional decrease in the transmembrane electri-

cal potential and cellobiose transport activity (Russell,

1987). Extracellular cellobiose (or possibly cellodextrins) then

inhibits cellulases via end-product inhibition (Maglione et al.,

1997). Pitt et al. (1996) hypothesized that acidic ruminal pH

would increase maintenance energy expenditures of cellulo-

lytic ruminal bacteria, but this hypothesis was based on

continuous culture data with B. fibrisolvens rather than the

more active species of ruminal cellulolytic bacteria (Russell

& Dombrowski, 1980). Because F. succinogenes, R. albus and

R. flavefaciens did not exhibit a decline in cell yield before

pH-dependent inhibition, there is little support for the idea

that maintenance energy is affected (Russell & Dombrowski,

1980); in fact, estimates of m in cellulose-grown contin-

uous cultures of both F. succinogenes (Weimer, 1993a) and

R. flavefaciens (Shi & Weimer, 1992) decrease slightly with

culture pH.

The potential impact of low pH and feedback inhibition

on cellulose digestion in the rumen, however, must be

coupled with the observation that cellulolytic ruminal

bacteria can provide cellodextrins to noncellulolytic bacteria

that are more resistant to acidic pH (Russell & Dombrowski,

1980; Russell, 1985; Mouriño et al., 2001), helping to

modulate the effect of pH on cellulose digestion and
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allowing some cellulose digestion (albeit at a lower rate) at

pH values o 6.0. Because even prolonged exposure of the

ruminal cellulolytic bacteria to a low pH has little, if any,

effect on their subsequent ability to digest cellulose (Hiltner

& Dehority, 1983), ruminal pH only needs to remain 4 6.0

(the minimum pH for growth of the cellulolytic bacteria)

long enough to permit an average growth rate that exceeds

their rate of passage (Mouriño et al., 2001).

Only at pH values of 5.3 or lower is there a complete

cessation of ruminal cellulose digestion, and values this low

are usually not encountered in dairy cattle fed large amounts

of cereal grain and modest amounts of forage. When the pH

of the rumen is this low for an extended period, cellulolytic

bacteria can no longer adhere to cellulose (Mouriño et al.,

2001) and the animal itself is severely affected by a variety of

maladies (rumen ulcers, liver abscesses, founder and even

death) (Nagaraja & Chengappa, 1998; Owens et al., 1998).

A STELLA
s-based model for ruminal

cellulose digestion and bacterial growth

The question then arises: can our knowledge of ruminal

cellulose digestion and bacterial growth be analyzed quanti-

tatively? Many sophisticated modeling programs are now

available. We chose to use a mature, commercial, dynamic

simulation program STELLA
s (Isee Systems Inc.; http://

www.iseesystems.com), available for Microsoft WindowsTM

and Mac OS XTM platforms, and used to study a diversity of

issues from economics to science. The STELLA
s system has

several advantages: (1) intuitive icon-based graphical inter-

face, (2) stock and flow diagrams that provide an insight

into how the system works and (3) causal loop diagrams that

present relationships in a mechanistic fashion. The latest

version can export models to the Internet for use with a web

browser. STELLA
s provides the biologist with a platform for

translating mechanistic phenomena into quantitative mod-

els, without the necessity of prior modeling experience.

Richmond (2004) stressed the importance of excluding

unnecessary details in any meaningful modeling effort. In

keeping with this strategy, we focused on the major aspects

of ruminal cellulose degradation: (1) ingestion, digestion

and passage of feed particles, (2) maintenance and growth of

cellulolytic bacteria and (3) pH effects. The model was based

on assumptions that the rumen is a first-order system with

respect to substrate (zero order with respect to cells) (Kohn,

2003) and that the amount of cellulose digested is a product

of the digestion rate and passage rate (Waldo et al., 1972).

The model does not address bacterial interactions, differ-

entiate among cellulolytic species or specifically account for

adherent vs. nonadherent cells. However, the first-order rate

of cellulose digestion is driven by the amount of cellulose

remaining. As the cellulose concentration decreases and

bacterial mass increases, an increasingly large fraction of

the bacteria becomes nonadherent. Because the ruminal

residence time of nonadherent bacteria is typically 24 h or

less (Hungate, 1966), endogenous metabolism was not

included. Protozoa and fungi were not included, based on

observations that bacteria are usually much more impor-

tant. The model cannot yet address potential cross-feeding

between cellulolytic and noncellulolytic species, which could

be important if the growth characteristics (e.g. YG and a)

differed significantly between these two groups. Further-

more, the model does not address the passage of either

group from the rumen, which will be addressed as the model

is expanded to consider other aspects of rumen activity.

N-limitation was ignored because ruminants are surpris-

ingly good at recycling urea to the rumen, where it is

converted to ammonia, and ruminal ammonia can be

inexpensively derived from dietary nonprotein nitrogen

(Nolan & Dobos, 2005). Lysis and predation play significant

roles in ruminal ecology, but the impact on cellulose

digestion is not yet clear. Two questions immediately arise.

Are cellulolytics more prone to lysis than other ruminal

bacteria? Are protozoa able to engulf attached as well as

nonadherent bacteria? Until these questions can be an-

swered, lysis and predation were considered beyond the

scope of this model, but could easily be incorporated (see

Fig. 1).

Figure 1 is a STELLA
s schematic that shows ruminal

cellulose digestion, and the generated equations are shown

in Table 1. A key advantage of STELLA
s is the ability to

evaluate the model graphically during construction. Alter-

natively, individual pieces can be segregated by multiplying a

‘down- or upstream’ flux by zero. Initially, cellulose was

evaluated with a Kd of 0.1 h�1. Kd values can be as high as

0.1 h�1, but values as low as 0.03 h�1 have also been reported

(Van Soest, 1973; Lechtenberg et al., 1974). Kp values range

from 0.03 to 0.08 h�1 (Satter, 1985) and the model accom-

modates variations in Kp as well as Kd. Cellulose utilization

based on a Kd of 0.1 h�1 and a Kp of 0.05 h�1 is shown in Fig.

2a. Because Kd was twice as high as Kp, twice as much

cellulose was digested, as passed. Figure 2b shows the effect

of varying Kd with Kp set at 0.05 h�1, but an alternative

strategy of varying Kp with a set Kd could easily be used.

‘Digested cellulose’ provides: (1) ATP for maintenance,

(2) ATP for growth and (3) carbon to synthesize cells. Fluxes

‘ATP for maintaining’ and ‘Growing’ were initially based on

m and a, but became rate-limiting steps, and there was a

large but transient buildup of ‘Digested Cellulose.’ Because

cellobiose and cellodextrins never accumulate in the rumen,

another strategy was needed. The strategy chosen was to

‘partition’ the ‘Digested Cellulose’ based on the relative

values of Kd, m and a by introducing a converter, ‘m vs. a,’

that was computed as (Kd� a)/a (Fig. 1). This converter was

only multiplied by ‘Growing,’ and ‘ATP for Maintaining’ was

left unaffected. Because neither ‘Growing’ nor ‘ATP for
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Fig. 1. A schematic showing the STELLA
s pro-

gram that was developed to relate ruminal cellu-

lose digestion with the rate of cellulolytic

bacteria.

Table 1. Equations of STELLA to model cellulose digestion

Cells(t) = Cells(t� dt)1(Making_Cells� Lysis_&_Predation)� dt

INITIAL: Cells = 1

INFLOWS:

Making_Cells = Cellulose__for_Growth

OUTFLOWS:

Lysis_&_Predation = unspecified for now

Cellulose_Consumed(t) = Cellulose_Consumed(t� dt)1

(�Degrading_Cellulose� Passing_Cellulose)� dt

INITIAL: Cellulose_Consumed = 10 000

OUTFLOWS:

Degrading_Cellulose = Cellulose_Consumed�Kd� pH_Inhibition

Passing_Cellulose = Cellulose_Consumed�Kp

Cellulose_for_ATP_to_Maintain(t) = Cellulose_for_ATP_to_

Maintain(t�dt)1(ATP_for_Maintaining)� dt

INITIAL: Cellulose_for_ATP_to_Maintain = 0

INFLOWS:

ATP_for_Maintaining = Digested_Cellulose

Cellulose_for__ATP_to_Grow(t) = Cellulose_for__ATP_to_

Grow(t� dt)1(ATP_for__Growing)� dt

INITIAL: Cellulose_for__ATP_to_Grow = 0

INFLOWS:

ATP_for__Growing = Cellulose__for_Growth� ((1/YG)�1)

Cellulose__for_Growth(t) = Cellulose__for_Growth(t� dt)1

(Growing�ATP_for__Growing�Making_Cells)� dt

INITIAL: Cellulose__for_Growth = 0

INFLOWS:

Growing = Digested_Cellulose� m__vs.__a

Table 1. Continued.

OUTFLOWS:

ATP_for__Growing = Cellulose__for_Growth� ((1/YG)�1)

Making_Cells = Cellulose__for_Growth

Digested_Cellulose(t) = Digested_Cellulose(t�dt)1(Degrading_

Cellulose�ATP_for_Maintaining�Growing)�dt

INITIAL: Digested_Cellulose = 0

INFLOWS:

Degrading_Cellulose = Cellulose_Consumed�Kd� pH_Inhibition

OUTFLOWS:

ATP_for_Maintaining = Digested_Cellulose

Growing = Digested_Cellulose� m__vs.__a

Undigested_Cellulose(t) = Undigested_Cellulose(t� dt)1(Passing_

Cellulose)�dt

INITIAL: Undigested_Cellulose = 0

INFLOWS:

Passing_Cellulose = Cellulose_Consumed�Kp

a = 0.02.

Cell_Yield_% = Cells/(Cells1Cellulose_for_ATP_to_Maintain1Cellulose_

for__ATP_to_Grow)� 100.

Kd = 0.06.

Kp = 0.05.

m__vs.__a = (Kd� a)/a.

Rumen__pH = 7.

YG = 0.2.

pH_Inhibition = GRAPH(Rumen__pH).

(5.00, 0.00), (5.20, 0.1), (5.40, 0.25), (5.60, 0.4), (5.80, 0.55), (6.00,

0.7), (6.20, 0.85), (6.40, 0.995), (6.60, 1.00), (6.80, 1.00), (7.00, 1.00).
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Maintaining’ was rate limiting, ‘Digested Cellulose’ did not

accumulate. The effect of Kd (when a = 0.02 h�1) on ‘Cellu-

lose for ATP to Maintain’ vs. ‘Cellulose for Growth’ is shown

in Fig. 3a. Sensitivity analysis of a with constant Kd is shown

in Fig. 3b. Based on these results, both of these physiological

characteristics are important.

‘Cellulose for Growth’ was then partitioned into cellulose

used to make ‘Cells’ and ‘Cellulose for ATP to Grow’ (Fig.

1), based on the idea that ‘YG’ could also be a variable, and

another converter (YG) adjusts ‘ATP for Growing.’ The effect

of changes in YG is shown in Fig. 4. As mentioned above,

declines in ruminal pH can inhibit cellulose digestion, and

this is accommodated by a graphical converter for ‘Degrad-

ing Cellulose’ (Fig. 5). This graph was derived from a

regression equation of experiments conducted with mixed

ruminal bacteria in vitro (Mouriño et al., 2001). The effect of

pH on ‘Digested Cellulose’ is shown in Fig. 6. The decision

to have pH affect Kd rather than Yg, m or a was based on the

observation that acidic pH increases interconversion of the
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Fig. 2. (a) Amount of cellulose (%) that was consumed, digested in the

rumen or passed from the rumen undigested. In this particular example

the digestion rate (Kd) was 0.1 h�1 and the passage rate (Kp) was

0.05 h�1. (b) Cellulose consumption when Kd was varied from 0 to

0.2 h�1 and Kp was set at 0.05 h�1.

K

Fig. 3. Impact of digestion rate, Kd (a) or the maintenance coefficient, a

(b), on the utilization of ‘Digested Cellulose’ for either growth (Cellulose

for Growth) or maintenance (Cellulose for ATP to Maintain).

Fig. 4. Impact of theoretical maximum growth yield (YG) on the

utilization of ‘Cellulose for Growth’ for either ATP production needed

to make cells (Cellulose for ATP to Grow) or actually making cell

material (Cells).
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transmembrane pH and electrical gradients, anion accumu-

lation, loss in transport activity (Russell, 1987) and subse-

quent end-product inhibition of cellulases (Maglione et al.,

1997) (see ‘Ruminal acidosis’). Because the data in Fig. 5

were derived from studies with mixed cultures of ruminal

bacteria rather than pure cultures, the ‘modulation’ caused

by cellodextrin cross-feeding is already accounted for.

As mentioned previously, the efficiency of bacterial

growth in the rumen can significantly impact the availability

of amino acids to the animal, and bacterial growth is

influenced by a variety of factors that can act in an additive

fashion (Fig. 1). By dividing ‘Cells’ by the sum of ‘Cellu-

lose for ATP,’ ‘Cellulose for ATP to Grow’ and ‘Cells,’ it is

possible to calculate ‘Cell Yield %’ as well. Figure 7 shows

that variations in Yg and Kd can have a large impact on cell

yield when a = 0.02 h�1. However, it should be noted that at

very low Kd values, cellulose digestion is virtually indepen-

dent of YG.

Limitations of the model and outlook for
future research

Richmond’s (2004) instructions for constructing and evalu-

ating a model are very straightforward: ‘despite the fact that

all models are wrong, you have no choice but to use them – no

choice that is, if you are going to think.’ In keeping with this

instruction, some limitations of the model are described.

The digestion vs. passage relationship originally proposed by

Waldo et al. (1972) was based on a steady-state model of

ruminal fermentation, but animals often consume feed in a

discontinuous rather than a continuous fashion. Another

simplification is the idea that feed particles are in a form that

can immediately be digested or leave the rumen. When

animals consume large feed materials, rumination is needed

to grind them to a size that can pass through the omasum to

the lower gut. However, because this process would confer a

time delay for both Kp and Kd, there is at least some

compensation. The model in its simplest form only uses a

single form of cellulose. However, cellulose can be derived

from more than one feed source, and Kd can vary. One

method of handling this latter complexity is to use weighted

averages that adjust Kd in proportion to the amount and

type of feeds ingested. Probably the greatest limitation of the

model involves pH. If the rumen were truly operating at a

steady state, pH could be set at a constant value. However,

diets that promote ruminal acidosis contain large amounts

of cereal and are typically consumed in meals rather than

continuously. All of these considerations raise yet another

question: should the model be used to address a single

animal or a large group of animals consuming a similar diet?

Because animals differ greatly in their feeding behavior,

limitations would be greater for a single animal rather than

the average of a group. Another obvious reservation revolves

around the importance of a and YG in determining the

Fig. 5. Inhibition of cellulose digestion (Kd) by ruminal pH. When the

value is less than 1.0, Kd is decreased proportionally.

Fig. 6. Effect of ruminal pH on ‘Cellulose Digested’ and the passage of

‘Undigested Cellulose’ from the rumen. The digestion rate, Kd, and

passage rate, Kp, were 0.06 and 0.05 h�1, respectively.

Fig. 7. Effect of digestion rate (Kd) and theoretical maximum growth

yield (YG) on the cell yield of cellulolytic ruminal bacteria. Values on each

contour are expressed as % of g cells g�1 cellulose.
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magnitude of cell production, and the scarcity of data in this

area of research. Because sensitivity analyses (Figs 3, 4 and 7)

demonstrate that these parameters are important determi-

nants of cell production from cellulose, additional research

is warranted.

Future additions to the STELLA
s model will include other

aspects of ruminal fermentation that can affect animal

productivity, including other major end-products of rumen

fermentation: fermentation acids (the primary energy

sources for the animal), CO2, CH4 and excreted nitrogen.

By better balancing the rate of carbohydrate and protein

degradation in the rumen, it may be possible to use STELLA
s

to improve the efficiency of nitrogen use in the ruminants.

Ruminal vs. industrial fermentations of
plant biomass

Nearly 60 years ago, Robert Hungate (1950) compared

ruminal and industrial fermentations and concluded that

the rumen was superior. ‘In summary, an industrial cellulose

fermentation might be profitable if the cost of collection of

raw materials could be minimized through the use of

numerous small plants, if the small plants could be cheaply

constructed, if the operation could be made automatic to

decrease necessary personnel, and if the concentration of

cellulose fermented could be increased by continuous re-

moval of fermentation products. Although such a situation

is at present quite out of the question as an industrial process,

it is almost an exact specification of the ruminant animal, a

small fermentation unit which gathers the raw materials,

transfers it to the fermentation chamber, and regulates its

further passage, continuously absorbs the fermentation pro-

ducts and transforms them into a few valuable substances,

like meat, milk, etc. To these advantages must be added the

crowning adaptation: the unit replicates itself.’

The United States has initiated a massive program to

convert corn into ethanol to partially replace petroleum with

a ‘biofuel’ (Groom et al., 2008). However, most people agree

that utilization of starch is only a temporary solution and

that the technology will eventually utilize cellulosic materi-

als (e.g. switchgrass) (Searchinger et al., 2008). Conversion

of cellulose to ethanol is constrained by the fact that the

most commonly exploited ethanol-producing microorgan-

isms, the yeasts, lack cellulases. Some people have advocated

the use of fungal cellulases in combination with traditional

yeast fermentation. However, despite years of intensive

research, this process is not yet economical (Himmel et al.,

2007). Others have proposed use of the fermentative anae-

robe, C. thermocellum (Lu et al., 2006), in a single-step

process ‘consolidated bioprocessing’ (Lynd et al., 2002), but

this cellulose-degrading bacterium prefers to produce end

products that yield more ATP than ethanol (e.g. acetate),

and it has a significantly lower tolerance of ethanol than

yeast (Demain et al., 2005). Currently, industrial fermenta-

tions do not have economical systems of continuous end-

product removal, which is a major shortcoming.

Hungate’s (1950) comparison was eloquent, but did not

directly address the property most apt to limit either

ruminal or industrial fermentation of cellulose, namely

available surface area. The ruminant solves this problem by

selecting forages that (1) are not highly lignified, (2) have

thin cell walls and (3) can be ground (ruminated) into very

small particles so that the cellulases can have a greater access

(Jung et al., 2004). Industrial cellulose fermentations could,

in theory, also use mechanical procedures to reduce the

particle size, but chemicals coupled with nonambient tem-

peratures or pressures appear to be more practical. The most

commonly used chemicals are either strong acids that

separate the hemicellulose and lignin from the cellulose or

alkali (NaOH or NH3) that dissolves the lignin. The

economics of these treatments are still questionable.

Conclusions

The rumen is the best-understood cellulose-digesting eco-

system in nature and it appears that previously isolated and

characterized cellulolytic bacteria provide a reasonable

model of ruminal cellulose digestion. Using STELLA
s soft-

ware, we have devised a mathematical model that addresses

all of the major aspects of ruminal cellulose degradation: (1)

ingestion, digestion and passage of feed particles, (2) main-

tenance and growth of cellulolytic bacteria and (3) pH

effects. Simulations indicated that all of these parameters

were potentially important determinant of cellulose diges-

tion and cell production in the rumen. Continuously

operated industrial cellulose fermentations that are as robust

as the rumen have not yet been developed. However, our

STELLA
s model could be modified to accommodate an

industrial batch culture that is eventually limited by the

end product (ethanol).
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